EFFECT OF CANAGLIFLOZIN ALONE AND IN COMBINATION WITH METFORMIN ON HORMONAL DERANGEMENTS AND ESTROUS CYCLE IN A POLYCYSTIC OVARY SYNDROME RAT MODEL

Main Article Content

Akfish Zaheer
Rabab Miraj
Nada Azam
Amir Hassan
Sadia Chiragh

Abstract

OBJECTIVE: To evaluate the effect of canagliflozin and metformin on the estrous cycle and hormonal derangement of letrozole induced polycystic ovarian syndrome (PCOS) in Sprague Dawly rats.


METHODS:  Thirty six female adult non-pregnant Sprague Dawly rats were divided into six groups and all, except normal control (A), were treated with letrozole 1mg/kg daily for 21 days. Treatment was started to all rats except normal control (group-A) and disease control (group-B). Canagliflozin 10 mg/kg, metformin 100 mg/kg and their combinations in high and low doses were given daily to rats of groups-C (canagliflozin-alone), group-D (metformin-alone), group-E (high dose combination) and group-F (low dose combination) respectively. Vaginal smears were taken daily, to observe the estrous cycle, till the 48th day of study. Blood samples were collected on the 22nd and 48th day for hormonal assay.


RESULTS: Significant increase in serum estradiol levels (ηg/dl) [group-A=46.53±9.40, group-B=18.75±2.48, group-C=23.00±10.15, group-D=37.41±8.54, group-E=57.58±12.88, group-F=41.93±10.32] and Follicle Stimulating Hormone levels (IU) [group-A=22.90±5.98, group-B=9.30±2.88, group-C=25.73±6.70, group-D=17.60±4.89, group-E=27.36±4.12, group-F=16.11±3.56] and decrease in testosterone levels (ηg/dl) [group-A=4.48±1.21, group-B=10.12±2.90, group-C=2.85±1.00, group-D=4.41±2.30, group-E=2.50±1.28, group-F=4.15±0.79] and Luteinizing Hormone levels(ηg/dl) [group-A=24.55±7.07, group-B=31.25±12.88, group-C=7.71±2.89, group-D=11.43±7.17, group-E=6.98±2.28, group-F=15.86±16.35]. Number of estrous cycles were significantly less in group-B (3-4 cycles/rat). Group-E (10-11 cycles/rat) resulted in significantly high estrous cycles number as compared to group-C (8-9 cycles/rat), group-D and group-F (7-8 cycles/rat).


CONCLUSION: Canagliflozin is effective alone and augment the effect of metformin for the regularization of estrous cycles and reversal of hormonal derangements in a rat model of PCOS.

Article Details

How to Cite
Zaheer, A., R. Miraj, N. Azam, A. Hassan, and S. Chiragh. “EFFECT OF CANAGLIFLOZIN ALONE AND IN COMBINATION WITH METFORMIN ON HORMONAL DERANGEMENTS AND ESTROUS CYCLE IN A POLYCYSTIC OVARY SYNDROME RAT MODEL”. KHYBER MEDICAL UNIVERSITY JOURNAL, Vol. 13, no. 2, June 2021, pp. 76-81, doi:10.35845/kmuj.2021.20602.
Section
Original Articles

References

1. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril 2016;106(1):6-15. https://doi.org/ 10.1016/j.fertnstert.2016.05.003
2. Sowmya D, Anitha S. Clinical study of polycystic ovarian syndrome (PCOS) in tertiary care centre. Int J Reprod Contracept Obstet Gynecol 2017;6(8):3247-51. https://doi.org/10.18203/2320-1770.ijrcog20173144
3. Draper N, Powell BL, Franks S, Conway GS, Stewart PM, McCarthy MI. Variants implicated in cortisone reductase deficiency do not contribute to susceptibility to common forms of polycystic ovary syndrome. Clin Endocrinol 2006;65(1):64-70. https://doi.org/10.1111/j.1365-2265.2006.02547.x
4. Pateguana NB, Janes A. The contribution of hyperinsulinemia to the hyperandrogenism of polycystic ovary syndrome. J Insul Resist 2019;4(1):a50. https://doi.org/10.4102/jir.v4i1.50
5. Badawy A, Elnashar A. Treatment options for polycystic ovary syndrome. Int j Womens Health 2011;3:25-35. https://doi.org/10.2147/IJWH.S11304
6. Tang T, Lord JM, Norman RJ, Yasmin E, Balen AH. Insulin‐sensitising drugs (metformin, rosiglitazone, pioglitazone, D‐chiro‐inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database of Syst Rev 2012(5). https://doi.org/10.1002/14651858.CD003053.pub5
7. Polidori D, Sha S, Ghosh A, Plum-Mörschel L, Heise T, Rothenberg P. Validation of a novel method for determining the renal threshold for glucose excretion in untreated and canagliflozin-treated subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 2013;98(5):e867-71. https://doi.org/10.1210/jc.2012-4205
8. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 2016;65(9):2784-94. https://doi.org/10.2337/db16-0058
9. Watanabe Y, Nakayama K, Taniuchi N, Horai Y, Kuriyama C, Ueta K, et al. Beneficial effects of canagliflozin in combination with pioglitazone on insulin sensitivity in rodent models of obese type 2 diabetes. PLoS One 2015;10(1):e0116851. https://doi.org/10.1371/journal.pone.0116851
10. Bays HE, Weinstein R, Law G, Canovatchel W. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity 2014;22(4):1042-9. https://doi.org/10.1002/oby.20663
11. Zhang Y, Thai K, Kepecs DM, Gilbert RE. Sodium-glucose linked cotransporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease. PLoS One 2016;11(1):e0144640. https://doi.org/10.1371/journal.pone.0144640
12. Kafali H, Iriadam M, Ozardalı I, Demir N. Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 2004;35(2):103-8. https://doi.org/10.1016/j.arcmed.2003.10.005
13. Marie MA, Arafa NM, Alazimi SA. Effect of canagliflozin or metformin on metabolic disorders in obese diabetic rats. Afr J Pharm Pharmacol 2015;9(46):1071-9. https://doi.org/10.5897/AJPP2015.4455
14. Cora MC, Kooistra L, Travlos G. Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol 2015:43(6):776-93. https://doi.org/10.1177/0192623315570339
15. Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 2010;1(2):87-93. https://doi.org/10.4103/0976-500X.72350
16. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers 2016;2(1):1-8. https://doi.org/10.1038/nrdp.2016.57
17. Osuka S, Nakanishi N, Murase T, Nakamura T, Goto M, Iwase A, et al. Animal models of polycystic ovary syndrome: A review of hormone‐induced rodent models focused on hypothalamus‐pituitary‐ovary axis and neuropeptides. Reprod Med Biol 2019;18(2):151-60. https://doi.org/10.1002/rmb2.12262
18. Kauffman AS, Thackray VG, Ryan GE, Tolson KP, Glidewell-Kenney CA, Semaan SJ, et al. A novel letrozole model recapitulates both the reproductive and metabolic phenotypes of polycystic ovary syndrome in female mice. Biol Reprod 2015;93(3):69,1-12. https://doi.org/10.1095/biolreprod.115.131631
19. Westwood FR. The female rat reproductive cycle: a practical histological guide to staging. Toxicol Pathol 2008;36(3):375-84. https://doi.org/10.1177/0192623308315665
20. Manneras L, Cajander S, Holmäng A, Seleskovic Z, Lystig T, Lönn M, et al. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinol 2007;148(8):3781-91. https://doi.org/10.1210/en.2007-0168
21. Georgopoulos NA, Saltamavros AD, Decavalas G, Piouka A, Katsikis I, Panidis D. Serum AMH, FSH, and LH levels in PCOS. Fertil Steril 2010;93(3):e13. https://doi.org/10.1016/j.fertnstert.2009.10.006
22. Shi D, Vine DF. Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk. Fertil Steril 2012;98(1):185-93. https://doi.org/10.1016/j.fertnstert.2012.04.006
23. Jaganmohan C, Vannan M, Ali A. Evaluation of Clinical Efficacy of Metformin Therapy in Polycystic Ovary Syndrome. J Young Pharm 2017;9(2):277-9. https://doi.org/10.5530/jyp.2017.9.54
24. Hartmann G, McEwen B. Insulin resistance and polycystic ovary syndrome (PCOS): Part 2. Diet and Nutritional Medicine. J Aust Tradit-Med Soc 2019;25(1):18-22.
25. Velija-Ašimi Z. Evaluation of endocrine changes in women with the polycystic ovary syndrome during metformin treatment. Bosn J Basic Med Sci 2013;13(3):180-5. https://doi.org/10.17305/bjbms.2013.2359.
26. Kurzthaler D, Hadziomerovic-Pekic D, Wildt L, Seeber BE. Metformin induces a prompt decrease in LH-stimulated testosterone response in women with PCOS independent of its insulin-sensitizing effects. Reprod Biol Endocrinol 2014;12(1):98. https://doi.org/10.1186/1477-7827-12-98
27. De Leo V, La Marca A, Orvieto R, Morgante G. Effect of metformin on insulin-like growth factor (IGF) I and IGF-binding protein I in polycystic ovary syndrome. J Clin Endocrinol Met 2000;85(4):1598-600. https://doi.org/10.1210/jcem.85.4.6560
28. Mcewen B, Hartmann G. Insulin resistance and polycystic ovary syndrome (PCOS): Part 1. The impact of insulin resistance. J Aust Tradit-Med Soc 2018;24(4):214-9.