Structural dynamics of glycosylated isoforms of Glycodelin: a comparative study through molecular dynamics simulation
Main Article Content
Abstract
Objective: To study the structural dynamics of glycodelin (Gd) isoforms with distinct glycosylation patterns using molecular dynamics (MD) simulations to explore their potential roles in cancer.
Methods: We employed MD simulation to investigate the structural behavior of normal and aberrantly glycosylated glycodelin (PAEP). Protein sequence and glycosylation sites were retrieved from Universal Protein Resource (UniProt) and GLYCONNECT databases. Homology modeling and glycan attachment were performed using UCSF Chimera and Glycam, while molecular topology generated using CHARMM General Force Field. Simulations were performed using the Groningen package over a 50-nanosecond timescale. Post-simulation trajectory analyses included Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), hydrogen bonding analysis (HBA), and Principal Component Analysis (PCA) to evaluate the structural dynamics and stability of the glycodelin isoforms.
Results: RMSD and RMSF analyses demonstrated that glycated isoforms of both Gd1 and Gd2 exhibited greater structural stability, with reduced atomic fluctuations compared to their A-glycated counterparts. Remarkably, distinct residue fluctuations were observed at positions 30, 65, 110, and 142 in Gd1, and more broadly in Gd2. Rg analysis indicated increased compactness, particularly in glycated Gd2 isoform. PCA revealed higher structural randomness in A-glycated forms, while HBA further supported enhanced stability of glycated variants. Overall, the glycated Gd2 isoform emerged as most stable, suggesting a potential role in cancer-associated conformational behavior.
Conclusion: Native glycosylation enhances Gd stability and compactness while reducing solvent exposure. Isoform-2-GP, in particular showed the most favorable dynamics, highlighting its potential as a cancer biomarker or therapeutic target.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Work published in KMUJ is licensed under a
Creative Commons Attribution 4.0 License
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
1. Seppälä M, Taylor RN, Koistinen H, Koistinen R, Milgrom E. Glycodelin: a major lipocalin protein of the reproductive axis with diverse actions in cell recognition and differentiation. Endocr Rev 2002;23(4):401-30. https://doi.org/10.1210/er.2001-0026
2. Yeung WSB, Lee K-F, Koistinen R, Koistinen H, Seppala M, Ho PC, et al. Roles of glycodelin in modulating sperm function. Mol Cell Endocrinol 2006;250(1):149-56. https://doi.org/10.1016/j.mce.2005.12.038
3. Seppälä M, Koistinen H, Koistinen R, Chiu PCN, Yueng WSB. Glycodelin: a lipocalin with diverse glycoform-dependent actions. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from URL: https://www.ncbi.nlm.nih.gov/books/NBK6332/
4. Kämäräinen M, Halttunen M, Koistinen R, von Boguslawsky K, von Smitten K, Andersson LC, et al. Expression of glycodelin in human breast and breast cancer. Int J Cancer 1999;83(6):738-42. https://doi.org/10.1002/(sici)1097-0215(19991210)83:6%3C738::aid-ijc7%3E3.0.co;2-f
5. Koistinen H, Seppälä M, Nagy B, Tapper J, Knuutila S, Koistinen R. Glycodelin reduces carcinoma-associated gene expression in endometrial adenocarcinoma cells. Am J Obstet Gynecol 2005;193(6):1955-60. https://doi.org/10.1016/j.ajog.2005.05.073
6. Arnold JT, Lessey BA, Seppälä M, Kaufman DG. Effect of normal endometrial stroma on growth and differentiation in Ishikawa endometrial adenocarcinoma cells. Cancer Res 2002;62(1):79-88.
7. Julkunen M, Rutanen EM, Koskimies A, Ranta T, Bohn H, Seppälä M. Distribution of placental protein 14 in tissues and body fluids during pregnancy. Br J Obstet Gynaecol 1985;92(11):1145-51. https://doi.org/10.1111/j.1471-0528.1985.tb03027.x
8. Koistinen H, Koistinen R, Dell A, Morris HR, Easton RL, Patankar MS, et al. Glycodelin from seminal plasma is a differentially glycosylated form of contraceptive glycodelin-A. Mol Hum Reprod 1996;2(10):759-65. https://doi.org/10.1093/molehr/2.10.759
9. Tse JY, Chiu PC, Lee KF, Seppala M, Koistinen H, Koistinen R, et al. The synthesis and fate of glycodelin in human ovary during folliculogenesis. Mol Hum Reprod 2002;8(2):142-8. https://doi.org/10.1093/molehr/8.2.142
10. Chiu PC, Chung MK, Koistinen R, Koistinen H, Seppala M, Ho PC, et al. Cumulus oophorus-associated glycodelin-C displaces sperm-bound glycodelin-A and -F and stimulates spermatozoa-zona pellucida binding. J Biol Chem 2007;282(8):5378-88. https://doi.org/10.1074/jbc.M607482200
11. Seppälä M, Koistinen H, Koistinen R, Chiu PC, Yeung WS. Glycosylation related actions of glycodelin: gamete, cumulus cell, immune cell and clinical associations. Hum Reprod Update 2007;13(3):275-87. https://doi.org/10.1093/humupd/dmm004
12. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010;31(4):671-90. https://doi.org/10.1002/jcc.21367
13. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem 2005;26(16):1701-18. https://doi.org/10.1002/jcc.20291
14. Roe DR. RMSD Analysis in CPPTRAJ. Formerly known as "Tutorial A1: Setting up an advanced system. July 2014. Accessed on: March 30, 2021. Available form URL: https://ambermd.org/tutorials/analysis/tutorial1/index.php?utm_source=chatgpt.com
15. Wooding SJ, Howe LM, Gao F, Calder AF, Bacon DJ. A molecular dynamics study of high-energy displacement cascades in α-zirconium. J Nucl Mat 1998;254(2):191-204. https://doi.org/10.1016/S0022-3115(97)00365-6
16. BioChemCoRe. RMSD/RMSF Analysis. Accessed on: March 30, 2021. Available form URL: https://ctlee.github.io/BioChemCoRe-2018/rmsd-rmsf/.
17. Lobanov M, Bogatyreva NS, Galzitskaia OV. [Radius of gyration is indicator of compactness of protein structure]. Mol Biol (Mosk) 2008;42(4):701-6.
18. CD Computa Bio. Radius of gyration (Rg) analysis services. Accessed on: March 30, 2021. Available form URL: https://www.computabio.com/radius-of-gyration-rg-analysis-services.html
19. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202
20. Alizadeh-Rahrovi J, Shayesteh A, Ebrahim-Habibi A. Structural stability of myoglobin and glycomyoglobin: a comparative molecular dynamics simulation study. J Biol Phys 2015;41(4):349-66. https://doi.org/10.1007/s10867-015-9383-2
21. Lee HS, Qi Y, Im W. Effects of N-glycosylation on protein conformation and dynamics: protein data bank analysis and molecular dynamics simulation study. Sci Rep 2015;5(1):8926. https://doi.org/10.1038/srep08926
22. Wang W, Xi W, Hansmann UHE. Stability of the N-terminal helix and its role in amyloid formation of serum amyloid A. ACS Omega 2018;3(11):16184-90. https://doi.org/10.1021/acsomega.8b02377
23. Sirangelo I, Iannuzzi C. Understanding the role of protein glycation in the amyloid aggregation process. Int J Mol Sci 2021;22(12). https://doi.org/10.3390/ijms22126609
24. Morris KF, Billiot EJ, Billiot FH, Gladis AA, Lipkowitz KB, Southerland WM, et al. A molecular dynamics simulation study of the association of 1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate Enantiomers with a Chiral molecular micelle. Chem Phys 2014;439:36-43. https://doi.org/10.1016/j.chemphys.2014.05.004
25. Vigne JL, Hornung D, Mueller MD, Taylor RN. Purification and characterization of an immunomodulatory endometrial protein, glycodelin. J Biol Chem 2001;276(20):17101-5. https://doi.org/10.1074/jbc.m010451200
26. Qin BY, Bewley MC, Creamer LK, Baker HM, Baker EN, Jameson GB. Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry 1998;37(40):14014-23. https://doi.org/10.1021/bi981016t
27. Breustedt DA, Schönfeld DL, Skerra A. Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta 2006;1764(2):161-73. https://doi.org/10.1016/j.bbapap.2005.12.006
28. Fugate RD, Song PS. Spectroscopic characterization of beta-lactoglobulin-retinol complex. Biochim Biophys Acta 1980;625(1):28-42. https://doi.org/10.1016/0005-2795(80)90105-1
29. Sawyer L, Kontopidis G. The core lipocalin, bovine beta-lactoglobulin. Biochim Biophys Acta 2000;1482(1-2):136-48. https://doi.org/10.1016/s0167-4838(00)00160-6
30. Schiefner A, Rodewald F, Neumaier I, Skerra A. The dimeric crystal structure of the human fertility lipocalin glycodelin reveals a protein scaffold for the presentation of complex glycans. Biochem J 2015;466(1):95-104. https://doi.org/10.1042/bj20141003