Effect of blue cut glasses on color discrimination and contrast sensitivity in young emmetropes

Main Article Content

Mujeeb Ur Rehman
Asad Ullah
Saad Shehzad
Athar Shah

Abstract

Objective: To evaluate the effects of blue-cut glasses on visual functions, specifically color discrimination (CD) and contrast sensitivity (CS), in young emmetropes.


Methods: This interventional study was conducted at Hayatabad Medical Complex and Pakistan Institute of Community Ophthalmology, Peshawar, Pakistan, from 10-09-2022 to 10-04-2023. A total of 80 emmetropes aged 18–30 years with 6/6 vision were included, while individuals with ocular or systemic conditions affecting vision were excluded. Visual functions were assessed using the Ishihara test for color blindness, Pelli-Robson chart for contrast sensitivity, and FM 100 Hue test for color discrimination. Participants were tested with and without blue-cut glasses in randomized sessions to avoid fatigue or memorization effects. Data were analyzed using paired t-tests, with a p-value of <0.05 considered statistically significant.


Results: A total of 80 participants (55% male, 45% female) with a mean age of 25.37±2.99 years were included. Mean color discrimination (CD) score was 27.35±26.99 with non-blue-cut glasses and 34.05±28.33 with blue-cut glasses, showing a statistically significant difference (p = 0.004). The mean contrast sensitivity (CS) score was 1.92 ± 0.07 without blue-cut glasses and 1.91±0.08 with blue-cut glasses, with no statistically significant difference (p = 0.117). These findings indicate that blue-cut glasses negatively affect color discrimination but have no significant impact on contrast sensitivity.


Conclusion: Blue-cut glasses negatively impact color discrimination while showing no significant effect on contrast sensitivity in young emmetropes. These findings highlight the importance of evaluating the trade-offs between the protective and visual effects of blue-cut glasses.

Article Details

How to Cite
Rehman, Mujeeb Ur, et al. “Effect of Blue Cut Glasses on Color Discrimination and Contrast Sensitivity in Young Emmetropes”. KHYBER MEDICAL UNIVERSITY JOURNAL, vol. 16, no. 4, Dec. 2024, pp. 322-7, doi:10.35845/kmuj.2024.23579.
Section
Original Articles

References

1. Statista. Number of smartphone subscriptions worldwide from 2016 to 2027 [Internet]. 2022 [Accessed on: June 21, 2022]. Available from URL: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.

2. International Labour Organization. Working from home: Estimating the worldwide potential [Internet]. Geneva: ILO;2020 [Accessed on: June 21, 2022]. Available from URL: https://www.ilo.org/global/topics/non-standardemployment/publications/WCMS_743447/lang--en/index.htm

3. roy S. Demand for blue cut lenses surges [Internet]. Hindustan Times. Kolkata: Business Line; 2020 Jul [Accessed on: June 21, 2022] p. 1. Available from: https://www.thehindubusinessline.com/news/demand-for-blue-cut-lenses-surgies

4. Lawrenson JG, Hull CC, Downie LEJO, Optics P. The effect of blue‐light blocking spectacle lenses on visual performance, macular health and the sleep‐wake cycle: a systematic review of the literature. Ophthalmic Physiol Opt 2017;37(6):644-54. https://doi.org/10.1111/opo.12406

5. O'hagan J, Khazova M, Price LJE. Low-energy light bulbs, computers, tablets and the blue light hazard. Eye (Lond) 2016;30(2):230-3. https://doi.org/10.1038/eye.2015.261

6. Cajochen C, Frey S, Anders D, Späti J, Bues M, Pross A, et al. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. 2011;110(5):1432-8. https://doi.org/10.1152/japplphysiol.00165.2011

7. Figueiro MG, Wood B, Plitnick B, Rea MSJNL. The impact of light from computer monitors on melatonin levels in college students. Neuro Endocrinol Lett 2011;32(2):158-63.

8. Landry RJ, Bostrom RG, Miller SA, Shi D, Sliney DHJHP. Retinal phototoxicity: a review of standard methodology for evaluating retinal optical radiation hazards. Health Phys 2011;100(4):417-34. https://doi.org/10.1097/HP.0b013e3181f4993d

9. Fletcher AE, Bentham GC, Agnew M, Young IS, Augood C, Chakravarthy U, et al. Sunlight exposure, antioxidants, and age-related macular degeneration. Arch Ophthalmol 2008;126(10):1396-403. https://doi.org/10.1001/archopht.126.10.1396

10. Davison JA, Patel ASJIoc. Light normalizing intraocular lenses. Int Ophthalmol Clin 2005;45(1):55-106.

11. Downie LE, Busija L, Keller PRJCDoSR. Blue‐light filtering intraocular lenses (IOLs) for protecting macular health. Cochrane Database Syst Rev 2018;22:5(5):CD011977. https://doi.org/10.1002/14651858.CD011977.pub2

12. Kiser AK, Deschler EK, Dagnelie GJC. Visual function and performance with blue‐light blocking filters in age‐related macular degeneration. Clin Exp Ophthalmol 2008;36(6):514-20. https://doi.org/10.1111/j.1442-9071.2008.01824.x

13. Griswold MS, Stark WSJVr. Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet. Vision Res 1992;32(9):1739-43. https://doi.org/10.1016/0042-6989(92)90166-g

14. Downie LE, Wormald R, Evans J, Virgili G, Keller PR, Lawrenson JG, et al. Analysis of a systematic review about blue light–filtering intraocular lenses for retinal protection: Understanding the limitations of the evidence. JAMA Ophthalmol 2019;137(6):694-7. https://doi.org/10.1001/jamaophthalmol.2019.0019

15. Singh S, Anderson AJ, Downie LEJO, Optics P. Insights into Australian optometrists’ knowledge and attitude towards prescribing blue light‐blocking ophthalmic devices. Ophthalmic Physiol Opt 2019;39(3):194-204. https://doi.org/10.1111/opo.12615.

16. Singh ND and M. Sample Size Calculator for Comparing Paired Differences [Internet]. [Accessed on: June 21, 2022]. Available from URL: https://statulator.com/SampleSize/ss2PM.html#

17. “MUNSELL COLOR.” What Does My Score on the Farnsworth Munsell 100 Hue Test Mean? Munsell Color System, 2024, [Accessed on: October 28, 2024]. Available from URL: https://munsell.com/faqs/what-does-score-farnsworth-munsell-100-hue-test-mean/

18. Kinnear PR, Sahraie AJBJoO. New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5-22 and for age decades 30-70. Br J Ophthalmol 2002;86(12):1408-11. https://doi.org/10.1136/bjo.86.12.1408

19. DE FEZ MD, LUQUE MJ, VIQUEIRA, VALENTIN. Enhancement of Contrast Sensitivity and Losses of Chromatic Discrimination with Tinted Lenses. Optom Vis Sci 2002;79(9):590-7. https://doi.org/10.1097/00006324-200209000-00010

20. Alzahran HS, Roy M, Honson V, Khuu SKJC, Optometry E. Effect of blue-blocking lenses on colour contrast sensitivity. Clin Exp Optom 2021;104(2):207-14. https://doi.org/10.1111/cxo.13135

21. Alzahrani HS, Khuu SK, Roy MJC, Optometry E. Modelling the effect of commercially available blue‐blocking lenses on visual and non‐visual functions. Clin Exp Optom 2020;103(3):339-46. https://doi.org/10.1111/cxo.12959

22. Santandreu M, Valero EM, Gómez-Robledo L, Huertas R, Martínez-Domingo M-Á, Hernández-Andrés JJOE. Long-term effects of blue-blocking spectacle lenses on color perception. Opt Express 2022;30(11):19757-70. https://doi.org/10.1364/OE.455209

23. Baldasso M, Roy M, Boon My, Dain SJJC, Optometry E. Effect of blue–blocking lenses on colour discrimination. Clin Exp Optom 2021;104(1):56-61. https://doi.org/10.1111/cxo.13139

24. Alzahran HS, Roy M, Honson V, Khuu SKJC, Optometry E. Effect of blue-blocking lenses on colour contrast sensitivity. Clin Exp Optom 2021;104(2):207-14. https://doi.org/10.1111/cxo.13135

25. Hayashi K, Hayashi HJBjoo. Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses. Br J Ophthalmol 2006;90(8):1019-23. https://doi.org/10.1136/bjo.2006.090712

26. Muftuoglu O, Karel F, Duman RJJoC, Surgery R. Effect of a yellow intraocular lens on scotopic vision, glare disability, and blue color perception. J Cataract Refract Surg 2007;33(4):658-66. https://doi.org/10.1016/j.jcrs.2006.12.018

27. Leung TW, Li RW-h, Kee C-sJPo. Blue-light filtering spectacle lenses: optical and clinical performances. PLoS One 2017;12(1):e0169114. https://doi.org/10.1371/journal.pone.0169114

28. Greenstein VC, Chiosi F, Baker P, Seiple W, Holopigian K, Braunstein RE, et al. Scotopic sensitivity and color vision with a blue-light-absorbing intraocular lens. J Cataract Refract Surg 2007;33(4):667-72. https://doi.org/10.1016/j.jcrs.2006.12.012

29. Wang H, Wang J, Fan W, Wang WJJoC, Surgery R. Comparison of photochromic, yellow, and clear intraocular lenses in human eyes under photopic and mesopic lighting conditions. J Cataract Refract Surg 2010;36(12):2080-6. https://doi.org/10.1016/j.jcrs.2010.07.024

30. Rodríguez-Galietero A, Montés-Micó R, Muñoz G, Albarrán-Diego CJJoC, Surgery R. Comparison of contrast sensitivity and color discrimination after clear and yellow intraocular lens implantation. J Cataract Refract Surg 2005;31(9):1736-40. https://doi.org/10.1016/j.jcrs.2005.02.039

31. Landers J, Tan TH, Yuen J, Liu HJC, ophthalmology e. Comparison of visual function following implantation of Acrysof Natural intraocular lenses with conventional intraocular lenses. Clin Exp Ophthalmol 2007;35(2):152-9. https://doi.org/10.1111/j.1442-9071.2006.01434.x

32. Marshall J, Cionni RJ, Davison J, Ernest P, Lehmann R, Maxwell WA, et al. Clinical results of the blue-light filtering AcrySof Natural foldable acrylic intraocular lens. J Cataract Refract Surg 2005;31(12):2319-23. https://doi.org/10.1016/j.jcrs.2004.11.061

33. Hayashi K, Hayashi HJBjoo. Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses. Br J Ophthalmol 2006;90(8):1019-23. https://doi.org/10.1136/bjo.2006.090712

34. Lee JE, Stein JJ, Prevor MB, Seiple WHa, Holopigian K, Greenstein VC, et al. Effect of variable tinted spectacle lenses on visual performance in control subjects. CLAO J 2002;28(2):80-2.

Similar Articles

<< < 2 > >> 

You may also start an advanced similarity search for this article.