Virtual reality intervention in lower limb locomotor training for patients with multiple sclerosis: a systematic review
Main Article Content
Abstract
OBJECTIVE: To assess the results of virtual reality rehabilitation (VRR) use in locomotor training of lower limb motor skills for people with multiple sclerosis (MS).
METHODS: This systematic review was done in accordance with the PRISMA guidelines. The literature search was done using Embase, MEDLINE, Physiotherapy Evidence Database (PEDro) and Google Scholar and articles from 1947 to 8th May 2020 were included. The keywords were “virtual reality”, “motor learning” and “Multiple Sclerosis”. The identified studies were screened in accordance with the inclusion criteria and pertinent data was retrieved. Studies included diagnosis of MS on McDonald criteria and with use of VR for rehabilitation were included.
RESULTS: The results included a total of 10 studies in the systematic review. These included five Randomized Controlled Clinical Trials, two prospective interventional studies, one cross-sectional study, one retrospective study, and one case series. The combined number of subjects from all studies included 376 patients diagnosed with MS. The research studies were published from 2007-2020. The review identified that VR paired with robot-assisted walk training significantly increased participants' 2-minute walk test scores and Paced Auditory Serial Addition Task scores compared to controls for the 10-meter walking test.
CONCLUSION: Virtual reality may have positive benefits on MS patients' quality of life and lower limb learning and function along with improvements in the cognitive abilities.
Article Details
Work published in KMUJ is licensed under a
Creative Commons Attribution 4.0 License
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Mult Scler J 2020;26(14):1816-21. https://doi.org/10.1177/1352458520970841
Benedetti MG, Piperno R, Simoncini L, Bonato P, Tonini A, Giannini S. Gait abnormalities in minimally impaired multiple sclerosis patients. Mult Scler J 1999;(5):363-8. https://doi:10.1177/135245859900500510
Filli L, Sutter T, Easthope CS, Killeen T, Meyer C, Reuter K, et al. Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. Sci Rep 2018;8(1):4984. https://doi.org/10.1038/s41598-018-22676-0
Jongen PJ, Ter Horst AT, Brands A. Cognitive impairment in multiple sclerosis. Minerva Med 2012;103(2):73-96.
Milo R, Miller A. Revised diagnostic criteria of multiple sclerosis. Autoimmun Rev 2014;13(4-5):518-24. https://doi:10.1016/j.autrev.2014.01.012
Physiopedia. Virtual Reality Treatment for Multiple Sclerosis. [Accessed on: July 1, 2022]. Available from URL: https://www.physio-pedia.com/Virtual_Reality_Treatment_for_Multiple_Sclerosis
Kim A, Schweighofer N, Finely JM. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world. J NeuroEng Rehabil 2019;16(1):113. https://doi.org/10.1186/s12984-019-0584-y
Massetti T, Trevizan IL, Arab C, Favero FM, Ribeiro-Papa DC, de Mello Monteiro CB. Virtual reality in multiple sclerosis–a systematic review. Mult Scler Relat Disord 2016;8:107-12. https://doi:10.1016/j.msard.2016.05.014
Straudi S, Basaglia N. Neuroplasticity-Based Technologies and Interventions for Restoring Motor Functions in Multiple Sclerosis. Adv Exp Med Biol 2017;958:171-85. https://doi.org/10.1007/978-3-319-47861-6_11
Shalabi K. Neuroscience of motor learning in adults with non-dominant hand. J Crit Rev 2020;7(6):27-30. https://doi.org/10.31838/jcr.07.06.07
Peruzzi A, CereattiA, Della Croce U, Mirelman A. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study. Mult Scler Relat Disord 2016;5:91-6. https://doi.org/10.1016/j.msard.2015.11.002
Leocani L, Comi E, Annovazzi P, Rovaris M, Rossi P, Cursi M,et al. Impaired short-term motor learning in multiple sclerosis: evidence from virtual reality. Neurorehabil Neural Repair 2007;21(3):273-8. https://doi.org/10.1177/1545968306294913
Baram Y, Miller A. Virtual reality cues for improvement of gait in patients with multiple sclerosis. Neurology 2006;66(2):178-81. https://doi.org/10.1212/01.wnl.0000194255.82542.6b
Cattaneo D, Ferrarin M, Frasson W, Casiraghi A. Head control: volitional aspects of rehabilitation training in patients with multiple sclerosis compared with healthy subjects. Arch Phys Med Rehabil 2005;86(7):1381-8. https://doi.org/10.1016/j.apmr.2004.12.029
Casadio M, Sanguineti V, Morasso P, Solaro C. Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Mult Scler J 2008;14(3):330-42. https://doi.org/10.1177/1352458507085068
Graziadio S, Davison R, Shalabi K, Sahota KMA, Ushaw G, Morgan G, et al. Bespoke video games to provide early response markers to identify the optimal strategies for maximizing rehabilitation. Proceedings of the 29th Annual ACM Symposium on Applied Computing. 2014 March 24. https://doi.org/10.1145/2554850.2554953
Peñasco-Martín B, de los Reyes-Guzmán A, Gil-Agudo Á, Bernal-Sahún A, Pérez-Aguilar B, de la Peña-González AI. Aplicación de la realidad virtual en los aspectos motores de la neurorrehabilitación [Application of virtual reality in the motor aspects of neurorehabilitation]. Rev Neurol 2010;51(8):481-8. https://doi.org/10.33588/rn.5108.2009665
Davison R, Graziadio S, Shalabi K, Ushaw G, Morgan G, Eyre J. Early response markers from video games for rehabilitation strategies. ACM SIGAPP App Comput Rev 2014;14(3):36-43. http://dx.doi.org/10.1145/2670967.2670970
de Rooij IJ, van de Port IG, Meijer JG. Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis. Phys Ther 2016;96(12):1905-18. https://doi.org/10.2522/ptj.20160054
Iruthayarajah J, McIntyre A, Cotoi A, Macaluso S, Teasell R. The use of virtual reality for balance among individuals with chronic stroke: a systematic review and meta-analysis. Top Stroke Rehabil 2017;24(1):68-79. http://doi.org/10.1080/10749357.2016.1192361
Li Z, Han XG, Sheng J, Ma SJ. Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clin Rehabil 2016;30(5):432-40. https://doi.org/10.1177/0269215515593611
Harris DM, Rantalainen T, Muthalib M, Johnson L, Teo WP. Exergaming as a Viable Therapeutic Tool to Improve Static and Dynamic Balance among Older Adults and People with Idiopathic Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2015;7:167. https://doi.org/10.3389/fnagi.2015.00167
Donath L, Rössler R, Faude O. Effects of Virtual Reality Training (Exergaming) Compared to Alternative Exercise Training and Passive Control on Standing Balance and Functional Mobility in Healthy Community-Dwelling Seniors: A Meta-Analytical Review. Sports Med 2016;46(9):1293-309. https://doi.org/10.1007/s40279-016-0485-1
Molina KI, Ricci NA, de Moraes SA, Perracini MR. Virtual reality using games for improving physical functioning in older adults: a systematic review. J Neuroeng Rehabil 2014;11:156. https://doi.org/10.1186/1743-0003-11-156
Booth V, Masud T, Connell L, Bath-Hextall F. The effectiveness of virtual reality interventions in improving balance in adults with impaired balance compared with standard or no treatment: a systematic review and meta-analysis. Clin Rehabil 2014;28(5):419-31. https://doi.org/10.1177/0269215513509389
Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8(5):336-41. https://doi.org/10.1016/j.ijsu.2010.02.007
Maggio MG, De Luca R, Manuli A, Buda A, Foti Cuzzola M, Leonardi S, et al. Do patients with multiple sclerosis benefit from semi-immersive virtual reality? A randomized clinical trial on cognitive and motor outcomes. Appl Neuropsychol Adult 2022;29(1):59-65. https://doi.org/10.1080/23279095.2019.1708364
Munari D, Fonte C, Varalta V, Battistuzzi E, Cassini S, Montagnoli AP, et al. Effects of robot-assisted gait training combined with virtual reality on motor and cognitive functions in patients with multiple sclerosis: A pilot, single-blind, randomized controlled trial. Restor Neurol Neurosci 2020;38(2):151-64. https://doi.org/10.3233/RNN-190974
Ozkul C, Guclu-Gunduz A, Yazici G, Atalay Guzel N, Irkec C. Effect of immersive virtual reality on balance, mobility, and fatigue in patients with multiple sclerosis: A single-blinded randomized controlled trial. Eur J Integr Med 2020;35:101092. https://doi.org/10.1016/j.eujim.2020.101092
Peruzzi A, Zarbo IR, Cereatti A, Della Croce U, Mirelman A. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis. Disabil Rehabil 2017;39(15):1557-63. https://doi.org/10.1080/09638288.2016.1224935
Prosperini L, Fortuna D, Giannì C, Leonardi L, Marchetti MR, Pozzilli C. Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis. Neurorehabil Neural Repair 2013;27(6):516-25. https://doi.org/10.1177/1545968313478484
Gutiérrez RO, Galán Del Río F, Cano de la Cuerda R, Alguacil Diego IM, González RA, Page JC. A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation. 2013;33(4):545-54. https://doi.org/10.3233/nre-130995
Al-Sharman A, Khalil H, El-Salem K, Alghwiri AA, Khazaaleh S, Khraim M. Motor performance improvement through virtual reality task is related to fatigue and cognition in people with multiple sclerosis. Physiother Res Int 2019;24(4):e1782. https://doi.org/10.1002/pri.1782
Streicher MC, Alberts JL, Sutliff MH, Bethoux F. Effects and feasibility of virtual reality system vs traditional physical therapy training in multiple sclerosis patients. Int J Ther Rehabil 2018;25(10):522-8. https://doi.org/10.12968/ijtr.2018.25.10.522
Ortiz-Gutiérrez R, Cano-de-la-Cuerda R, Galán-del-Río F, Alguacil-Diego I, Palacios-Ceña D, Miangolarra-Page J. A Telerehabilitation Program Improves Postural Control in Multiple Sclerosis Patients: A Spanish Preliminary Study. Int J Environ Res Public Health 2013;(11):5697-710. https://doi.org/10.3390/ijerph10115697
Mahajan HP, Spaeth DM, Dicianno BE, Brown K, Cooper RA. Preliminary evaluation of variable compliance joystick for people with multiple sclerosis. J Rehabil Res Develop 2014;(6):951-62. https://doi:10.1682/jrrd.2013.01.0023
Lin KH, Chen CH, Chen YY, Huang WT, Lai JS, Yu SM, et al. Bidirectional and multi-user telerehabilitation system: clinical effect on balance, functional activity, and satisfaction in patients with chronic stroke living in long-term care facilities. Sensors 2014;14(7):12451-66. https://doi.org/10.3390/s140712451
Amatya B, Khan F, Galea M. Rehabilitation for people with multiple sclerosis: an overview of Cochrane Reviews. Cochrane Database Sys Rev 2019;1(1): CD012732. https://doi.org/10.1002/14651858.cd012732.pub2
Khan F, Amatya B. Rehabilitation in Multiple Sclerosis: A Systematic Review of Systematic Reviews. Arch Phys Med Rehabil 2017;98(2):353-67. https://doi.org/10.1016/j.apmr.2016.04.016
Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA, Albiol-Pérez S, Palacios-Navarro G, Fardoun HM, et al. Virtual Rehabilitation for Multiple Sclerosis Using a Kinect-Based System: Randomized Controlled Trial. JMIR Serious Games 2014;2(2):e12. https://doi.org/10.2196/games.2933
de Mello Monteiro CB, Massetti T, da Silva TD, van der Kamp J, de Abreu LC, Leone C, et al. Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Res Dev Disabil 2014;35(10):2430-37. https://doi.org/10.1016/j.ridd.2014.06.006
Baram, Y, Aharon-Peretz J, Simionovici Y, Ron L. Walking on Virtual Tiles. Neural Processing Letters 2002;16:227-33. https://doi.org/10.1023/A:1021778608344
dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, Guedes da Silva K, Oliveira Tde P, Peterson Zomignani A, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease – effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy 2012;98(3):217-23. https://doi.org/10.1016/j.physio.2012.06.001
Pompeu JE, Mendes FA, Silva KG, Lobo AM, Oliveira Tde P, Zomignani AP, et al. Effect of Nintendo WiiTM-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: A randomised clinical trial. Physiotherapy 2012;98(3):196-204. https://doi.org/10.1016/j.physio.2012.06.004
Kandalaft MR, Didehbani N, Krawczyk DC, Allen TT, Chapman SB. Virtual Reality Social Cognition Training for Young Adults with High-Functioning Autism. J Autism Dev Disord 2012;43(1):34-44. https://doi.org/10.1007/s10803-012-1544-6
Mitchell P, Parsons S, Leonard A. Using Virtual Environments for Teaching Social Understanding to 6 Adolescents with Autistic Spectrum Disorders. J Autism Dev Disord 2006;37(3):589-600. https://doi.org/10.1007/s10803-006-0189-8
Berg P, Becker T, Martian A, Danielle PK, Wingen J. Motor Control Outcomes Following Nintendo Wii Use by a Child With Down Syndrome. Pediatr Phys Ther 2012;24(1):78-84. https://doi.org/10.1097/pep.0b013e31823e05e6
Courbois Y, Farran EK, Lemahieu A, Blades M, Mengue-Topio H, Sockeel P. Wayfinding behaviour in Down syndrome: A study with virtual environments. Res Dev Disabil 2013;34(5):1825-31. https://doi.org/10.1016/j.ridd.2013.02.023
Baram Y, Miller A. Glide-symmetric locomotion reinforcement in patients with multiple sclerosis by visual feedback. Disabil Rehabil Assist Technol 2010;5(5):323-6. https://doi.org/10.3109/17483101003671717
Doud AJ, Cassady K, Grande A, He B. A thought-controlled immersive virtual reality platform for motor learning applied with cortical and basal ganglia stroke survivors. Circulation 2013;128(suppl_22):Abstract18886.
Halder S. Application of Virtual Reality in Cognitive Rehabilitation: A Road Ahead. In: Emerging Advancements for Virtual and Augmented Reality in Healthcare. IGI Global; Pennsylvania (USA) 2022. pp. 217-32. http://dx.doi.org/10.4018/978-1-7998-8371-5.ch013