Optical coherence tomography metrics in normal, perimetric and pre-perimetric glaucoma: a diagnostic assessment

Main Article Content

Khadija Mohammad
Amena Masrur
Furqan Ahmad Khan
Mishal Batool
Fatima Amjad
Ali Tayyab

Abstract

Objectives: To compare the diagnostic performance of Bruch’s membrane opening–minimum rim width (BMO-MRW), retinal nerve fiber layer (RNFL), and ganglion cell layer (GCL) thickness in distinguishing normal eyes, pre-perimetric glaucoma (PPG), and perimetric glaucoma (PG).


Methods: This multicenter cross-sectional study was conducted at Akbar Niazi Teaching Hospital, Islamabad, and Farooq Teaching Hospital, Rawalpindi, from July 2023 to June 2024. A total of 320 patients (76 normal, 127 PPG, 117 PG; one right eye each) aged 18–70 years underwent comprehensive ophthalmic evaluation, including intraocular pressure measurement, slit-lamp biomicroscopy, dilated fundus examination, visual field testing, and optical coherence tomography (OCT). Exclusion criteria were media opacities, retinal disease, prior retinal laser, and non-glaucomatous optic neuropathies. OCT scans (Huvitz, v1.3.3) measured RNFL, BMO-MRW, and macular GCL thickness. Data were analyzed using ANOVA with post hoc testing and receiver operating characteristic curve analysis.


Results: Significant intergroup differences were found for all OCT parameters (p<0.05). RNFL and BMO-MRW were thickest in normal eyes, thinner in PPG, and thinnest in PG. BMO-MRW consistently demonstrated highest diagnostic accuracy, outperforming RNFL and GCL. The superotemporal BMO-MRW yielded largest AUC values (0.875 for PG vs normal; 0.797 for PPG vs normal). At 95% specificity, BMO-MRW achieved sensitivity up to 70% (77% at 90% specificity). RNFL showed fair diagnostic performance, while GCL exhibited limited value, particularly in distinguishing PPG from normal eyes.


Conclusion: BMO-MRW is the most reliable OCT metric for differentiating glaucomatous eyes from normal controls and demonstrates superior accuracy over RNFL and GCL in early glaucoma detection.

Article Details

How to Cite
Mohammad, Khadija, et al. “Optical Coherence Tomography Metrics in Normal, Perimetric and Pre-Perimetric Glaucoma: A Diagnostic Assessment”. KHYBER MEDICAL UNIVERSITY JOURNAL, vol. 17, no. 3, Sept. 2025, doi:10.35845/kmuj.2025.23883.
Section
Original Articles

References

1. Sun Y, Chen A, Zou M, Zhang Y, Jin L, Li Y, et al. Time trends, associations and prevalence of blindness and vision loss due to glaucoma: an analysis of observational data from the Global Burden of Disease Study 2017. BMJ Open 2022;12(1):e053805.

https://doi.org/10.1136/bmjopen-2021-053805

2. Lowry EA, Mansberger SL, Gardiner SK, Yang H, Sanchez F, Reynaud J, et al. Association of optic nerve head prelaminar schisis with glaucoma. Am J Ophthalmol 2021;223:246-58.

https://doi.org/10.1016/j.ajo.2020.10.021

3. Shirodker SS, Meethal NS, Mazumdar D, Asokan R. Performance of perimetric glaucoma staging systems and their preference patterns among the Indian eye care practitioners. Indian J Ophthalmol 2024;72(3):447-51. https://doi.org/10.4103/IJO.IJO_2060_23

4. Anderson A, Araie M, Asaoka R, Azuara-Blanco A, Bowd C, Brusini P, et al. Vision Function. Diagnosis of Primary Open Angle Glaucoma: WGA consensus series-10. 2017;10:21. ISBN: 9789062992621

5. La Bruna S, Tsamis E, Zemborain ZZ, Wu Z, De Moraes CG, Ritch R, et al. A topographic comparison of OCT minimum rim width (BMO-MRW) and circumpapillary retinal nerve fiber layer (cRNFL) thickness measures in eyes with or suspected glaucoma. J Glaucoma 2020;29(8):671-80. https://doi.org/10.1097/IJG.0000000000001571

6. Chua J, Schwarzhans F, Wong D, Li C, Husain R, Crowston JG, et al. Multivariate normative comparison, a novel method for improved use of retinal nerve fiber layer thickness to detect early glaucoma. Ophthalmol Glaucoma 2022;5(3):359-68. https://doi.org/10.1016/j.ogla.2021.10.013

7. Köse HC, Tekeli O. Optical coherence tomography angiography of the peripapillary region and macula in normal, primary open angle glaucoma, pseudoexfoliation glaucoma and ocular hypertension eyes. Int J Ophthalmol 2020;13(5):744-54. https://doi.org/10.18240/ijo.2020.05.08

8. Dhabarde KA, Kende RP, Rahul NV, Nangare AR. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Indian J Ophthalmol 2024;72(3):363-9. https://doi.org/10.4103/IJO.IJO_771_23

9. Kamalipour A, Moghimi S. Macular optical coherence tomography imaging in glaucoma. J Ophthalmic Vis Res 2021;16(3):478-89. https://doi.org/10.18502/jovr.v16i3.9442

10. Akil H, Huang AS, Francis BA, Sadda SR, Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One 2017;12(2):e0170476. https://doi.org/10.1371/journal.pone.0170476

11. Park DH, Kook KY, Kang YS, Piao H, Sung MS, Park SW. Clinical Utility of Bruch Membrane Opening-Minimum Rim Width for Detecting Early Glaucoma in Myopic Eyes. J Glaucoma 2021;30(11):971-80. https://doi.org/10.1097/IJG.0000000000001934

12. Khan N, Shakir M, Wasim S, Azmi S, Zafar S. Comparing Diagnostic Accuracy of MRW and RNFL in Detection of Glaucoma. Pak J Ophthalmol 2023;39(4):295-300. https://doi.org/10.36351/pjo.v39i4.1704

13. Park D, Park SP, Na KI. Comparison of retinal nerve fiber layer thickness and Bruch's membrane opening minimum rim width thinning rate in open-angle glaucoma. Sci Rep 2022;12(1):16069. https://doi.org/10.1038/s41598-022-20423-0

14. Kromer R, Spitzer MS. Bruch's Membrane Opening Minimum Rim Width Measurement with SD‐OCT: A Method to Correct for the Opening Size of Bruch's Membrane. J Ophthalmol 2017;2017(1):8963267. https://doi.org/10.1155/2017/8963267

15. Bambo MP, Fuentemilla E, Cameo B, Fuertes I, Ferrandez B, Güerri N, et al. Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocol. BMC Ophthalmol 2020;20:1-8. https://doi.org/10.1186/s12886-020-1322-8

16. Malik R, Belliveau AC, Sharpe GP, Shuba LM, Chauhan BC, Nicolela MT. Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes. Ophthalmology 2016;123(6):1181-9. https://doi.org/10.1016/j.ophtha.2016.01.052

17. Chauhan BC, Vianna JR, Sharpe GP, Demirel S, Girkin CA, Mardin CY, et al. Differential effects of aging in the macular retinal layers, neuroretinal rim, and peripapillary retinal nerve fiber layer. Ophthalmology 2020;127(2):177-85. https://doi.org/10.1016/j.ophtha.2019.09.013

18. Woertz EN, Omoba BS, Dunn TM, Chiu SJ, Farsiu S, Strul S, et al. Assessing ganglion cell layer topography in human albinism using optical coherence tomography. Invest Ophthalmol Vis Sci 2020;61(3):36. https://doi.org/10.1167/iovs.61.3.36

19. Vidas S, Popović-Suić S, Novak Lauš K, Jandroković S, Tomić M, Jukić T, et al. Analysis of ganglion cell complex and retinal nerve fiber layer thickness in glaucoma diagnosis. Acta Clin Croat 2017;56(3.):382-90. https://doi.org/10.20471/acc.2017.56.03.04

20. Domínguez-Vicent A, Brautaset R, Venkataraman AP. Repeatability of quantitative measurements of retinal layers with SD-OCT and agreement between vertical and horizontal scan protocols in healthy eyes. PLoS One 2019;14(8):e0221466. https://doi.org/10.1371/journal.pone.0221466

Similar Articles

1 > >> 

You may also start an advanced similarity search for this article.